Article ID Journal Published Year Pages File Type
655970 International Journal of Heat and Fluid Flow 2009 12 Pages PDF
Abstract

Hybrid approach combining large eddy simulation (LES) with the Reynolds-averaged Navier–Stokes equation (RANS) is expected to accurately simulate wall-bounded turbulent flows at high Reynolds numbers. As an important issue in developing hybrid methods, it is known that the log layers in the RANS and LES regions are not lined up in hybrid RANS/LES simulations of channel flow. Although several methods including additional filtering near the RANS/LES interface have been proposed to eliminate the log-layer mismatch, there is no obvious physical justification for the methods and some ad hoc tuning is necessary. In this work, the commutation error terms in the filtered velocity equations are investigated to justify the method of additional filtering. It is shown that the additional filtering can be considered as a finite difference approximation to extra terms due to the non-commutivity between the hybrid filter and the spatial derivative. Moreover, an expression determining the filter width and its location for the additional filtering is obtained. To validate the expression, a hybrid simulation of channel flow is carried out. The additional filtering with the filter width derived is shown to be effective in eliminating the log-layer mismatch and improving the mean velocity profile.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
,