Article ID Journal Published Year Pages File Type
656082 International Journal of Heat and Fluid Flow 2011 14 Pages PDF
Abstract
The flow and heat transfer in cylindrical and conical annular flow-passages with through flow and inner-wall rotation have been numerically simulated by using the large eddy simulation with a Lagrangian dynamic subgrid-scale model. Inlet through-flow Reynolds number was 1000 and the Taylor number was set at 0, 1000, 2000, and 4000. In the conical flow passage, when the inner-wall rotation speed was increased, at first spiral vortices in the downstream region and then much more complicated vortices appeared. The vortices for Ta = 4000 changed the structure in both through-flow and wall-normal directions in the downstream half of the passage. The flow structure and heat transfer of the conical case were completely different from those of the cylindrical case. It was because of the three factors: the expansion of the flow passage, the rotation radius change in the through-flow direction, and the centrifugally driven through-flow. The last factor is due to the acute angle between the centrifugal and through-flow directions.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,