Article ID Journal Published Year Pages File Type
657572 International Journal of Heat and Mass Transfer 2014 10 Pages PDF
Abstract

Boiling-favorable merits of nanowire arrays are discussed for the thermal stability of boiling heat transfer. Local and temporal heat transfer characteristics are evaluated on vertically aligned nanowire arrays using a devised temperature-array sensor. The effects of rough morphology and highly wetting characteristics of nanowires lead to the reliable heat transfer stability/uniformity as well as efficient heat dissipation performances in pool boiling environments. The easy re-wetting and by-productive cavity-like structures via long nanowires can stabilize nucleation dynamics that catalyzes bubble nucleation dispersely and detaches developed bubbles quickly. Nanowires-inspired boiling heat transfer can make a breakthrough in improvements of heat transfer uniformity/stability with spatial and temporal temperature variations less than 1.0 and 2.0 K, respectively. SiNWs can also guarantee enhancements of both heat dissipation capacity and efficiency by more than 100% compared to a plain surface.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , , , ,