Article ID Journal Published Year Pages File Type
657591 International Journal of Heat and Mass Transfer 2014 11 Pages PDF
Abstract
A magnetic nanofluid was prepared by dispersing magnetic Ni nanoparticles in distilled water. The nanoparticles were synthesized by chemical co-precipitation method and characterised by X-ray diffraction and atomic force microscopy. The average particle size was measured by the dynamic light scattering method. Thermal conductivity and absolute viscosity of the nanofluid were experimentally determined as a function of particle concentration and temperature. In addition, the Nusselt number and friction factor were experimentally estimated as a function of particle concentration and Reynolds number for constant heat flux condition in forced convection apparatus with no phase change of the nanofluid flowing in a tube. The experiments were conducted for a Reynolds number range of 3000-22,000, and for a particle concentration range from 0% to 0.6%. The results indicate that both Nusselt number and friction factor of the nanofluid increase with increasing particle volume concentration and Reynolds number. For 0.6% volume concentration, the enhancement of Nusselt number and friction factor is 39.18% and 19.12%, respectively, as compared to distilled water under the same flow conditions. It was verified the classical Gnielinski and Notter-Rouse correlations under predict the Nusselt number of the nanofluid; therefore, new generalized correlations are proposed for the estimation of the Nusselt number and friction factor based on the experimental data.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,