Article ID Journal Published Year Pages File Type
657826 International Journal of Heat and Mass Transfer 2014 7 Pages PDF
Abstract
A new experiment has been designed within the framework of a standard cone calorimeter to enable inert atmosphere, radiation-driven gasification of coupon-sized solid samples under thoroughly controlled, near-one-dimensional heating conditions. Sample mass loss (or burning) rate and surface temperature were measured simultaneously and recorded as a function of time. The temperature data were obtained by focusing a calibrated infrared camera on the non-radiated sample surface. These data were subsequently employed to compute thermal conductivity of the gasifying material. The thermal conductivity information was combined with the kinetics and thermodynamics of the thermal decomposition and broadband radiation absorption data to construct pyrolysis models for a set of widely used, non-charring thermoplastics including poly(methyl methacrylate), high-impact polystyrene and poly(oxymethylene). The resulting models were employed to predict the measured burning rate histories at 20-70 kW m−2 of external radiant heat flux. These predictions were found to be, on average, within 10% of the experimental values.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,