Article ID Journal Published Year Pages File Type
657877 International Journal of Heat and Mass Transfer 2014 13 Pages PDF
Abstract

In this paper, we propose a methodology to derive a macro-scale momentum equation that is free from the turbulence model chosen for the pore-scale simulations and that is able to account for large-scale anisotropy. In this method, Navier–Stokes equations are first time-averaged to form a new set of equations involving an effective viscosity. The resulting balance equations are then up-scaled using a volume averaging methodology. This procedure gives a macro-scale generalized Darcy–Forchheimer equation to which is associated a closure problem that can be used to evaluate the apparent permeability tensor including inertia effects. This approach is validated through 2D and 3D calculations. Finally, the method is used to evaluate the tensorial macro-scale properties for a gas flow through structured packings.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,