Article ID Journal Published Year Pages File Type
657971 International Journal of Heat and Mass Transfer 2013 9 Pages PDF
Abstract

Thermophotovoltaic (TPV) devices can convert thermal radiation directly into electricity. To improve the efficiency of TPV systems, wavelength-selective emitters are designed to take thermal energy from various heat sources and then emit photons to the TPV cells. A two-dimensional grating/thin-film nanostructure is proposed as an efficient emitter, whose performance is enhanced by the excitations of both surface plasmon polaritons (SPPs) and magnetic polaritons (MPs). Rigorous coupled-wave analysis is used to predict the emittance as well as the electromagnetic field and current density distributions. The normal emittance of the proposed nanostructure is shown to be wavelength-selective and polarization-insensitive. The mechanisms of SPP and MP excitations in the nanostructure are elucidated for different polarizations. The current–density loop further confirms the existence of magnetic resonances. Furthermore, the effect of azimuthal and polar angles on the emittance spectra is also investigated, suggesting that the proposed structure has high emittance not only in the normal direction but also at large oblique angles.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,