Article ID Journal Published Year Pages File Type
658220 International Journal of Heat and Mass Transfer 2013 12 Pages PDF
Abstract
The performance of tree-like fins with varying bifurcation angle, scale, material, width-to-thickness ratio, and heat flux was examined. Overall system performance was examined computationally. The computational results have been validated, verified, and cast in terms of commonly defined dimensionless parameters. Tree-like fins were found to be more effective and had lower base temperatures than the rectangular fins. Fin effectiveness was found to increase with increasing bifurcation angle while fin efficiency and base temperatures were found to decrease with increasing bifurcation angle. Base temperatures were highest for the largest width-to-thickness ratios and smallest for materials with relatively higher thermal conductivities. The microscale tree-like fin studied had the highest effectiveness and efficiency as well as the lowest base temperatures when compared to the mesoscale and macroscale fins of the same geometry.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,