Article ID Journal Published Year Pages File Type
658679 International Journal of Heat and Mass Transfer 2012 7 Pages PDF
Abstract

The boundary layer of an unsteady two-dimensional stagnation-point flow of a nanofluid is further investigated. The similarity equations are solved numerically for three types of nanoparticles, namely copper (Cu), alumina (Al2O3), and titania (TiO2) in the water based fluid with Prandtl number Pr = 6.2. The skin friction coefficient, the local Nusselt number, and the velocity and temperature profiles are presented and discussed. Effects of the solid volume fraction parameter φ on the fluid flow and heat transfer characteristics are thoroughly examined. Interesting observation is that there are dual solutions seen for negative values of the unsteadiness parameter A (decelerating flow with A < 0).

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,