Article ID Journal Published Year Pages File Type
658695 International Journal of Heat and Mass Transfer 2012 13 Pages PDF
Abstract

Numerical investigations were carried out for natural and mixed convection within domains with stationary and rotating complex geometry by using an immersed-boundary method. The method was first validated with flows induced by natural convection in the annulus between concentric circular cylinder and square enclosure, and the grid-function convergence tests were also examined. Natural convection induced by isothermally elliptic cylinder was further investigated for different Rayleigh numbers within the range of 104–106 and the influence of the outer enclosure was also considered. The parameters investigated in the study included Rayleigh number, axis ratio and inclination angle of the elliptic cross-section. Local and average heat transfer characteristics were fully studied around the surfaces of both inner cylinder and outer enclosure. Finally, mixed convection in a square enclosure with an active rotating elliptic cylinder was considered and the heat transfer quantities of the system were obtained for different rotating speeds.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,