Article ID Journal Published Year Pages File Type
658988 International Journal of Heat and Mass Transfer 2012 11 Pages PDF
Abstract

This second part of a two-part study concerns heat transfer characteristics for FC-72 condensing along parallel, square micro-channels with a hydraulic diameter of 1 mm, which were formed in the top surface of a solid copper plate. Heat from the condensing flow was rejected to a counter flow of water through channels brazed to the underside of the copper plate. The FC-72 condensation heat transfer coefficient was highest near the channel inlet, where the annual liquid film is thinnest. The heat transfer coefficient decreased along the micro-channel because of the film thickening and eventual collapse of the annular regime. Notable heat transfer enhancement was observed for annular flow regions of the micro-channel associated with interfacial waves. Comparing the present data to predictions of previous annular condensation heat transfer correlations shows correlations intended for macro-channels generally provide better predictions than correlations intended specifically for mini/micro-channels. A new condensation heat transfer coefficient correlation is proposed for annular condensation heat transfer in mini/micro-channels. The new correlation shows excellent predictive capability based on both the present FC-72 data and a large database for mini/micro-channel flows amassed from eight previous sources.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,