Article ID Journal Published Year Pages File Type
659198 International Journal of Heat and Mass Transfer 2010 10 Pages PDF
Abstract

Nanoparticle thin-film coatings applied to boiling surfaces using a layer-by-layer (LbL) assembly method demonstrated significant enhancement in the pool boiling critical heat flux (CHF) and nucleate boiling heat transfer coefficient. Up to 100% enhancement of the critical heat flux and over 100% enhancement of the heat transfer coefficient were observed for pool boiling of nickel wires coated with different thin-films of silica nanoparticles. Surface characterization revealed that the surface wettability changed drastically with the application of these coatings, while causing virtually no change in the surface roughness. It is concluded that the nanoporous structure coupled with the chemical constituency of these coatings leads to the enhanced boiling behavior.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , , ,