Article ID Journal Published Year Pages File Type
6593217 Chinese Journal of Chemical Engineering 2017 21 Pages PDF
Abstract
The present work focuses on a numerical investigation of the solids residence time distribution (RTD) and the fluidized structure of a multi-compartment fluidized bed, in which the flow pattern is proved to be close to plug flow by using computational fluid dynamics (CFD) simulations. With the fluidizing gas velocity or the bed outlet height rising, the solids flow out of bed more quickly with a wider spread of residence time and a larger RTD variance (σ2). It is just the heterogeneous fluidized structure that being more prominent with the bed height increasing induces the widely non-uniform RTD. The division of the individual internal circulation into double ones improves the flow pattern to be close to plug flow.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , ,