Article ID Journal Published Year Pages File Type
6594707 Computers & Chemical Engineering 2018 38 Pages PDF
Abstract
This paper presents a new algorithm to identify and diagnose stochastic faults in Tennessee Eastman (TE) process. The algorithm combines Ensemble Empirical Mode Decomposition (EEMD) with Principal Component Analysis (PCA) and Cumulative Sum (CUSUM) to diagnose a group of faults that could not be properly detected and/or diagnosed with previously reported techniques. This algorithm includes three steps: measurements pre-filtering, fault detection, and fault diagnosis. Measured variables are first decomposed into different scales using the EEMD-based PCA, from which fault signatures can be extracted for fault detection and diagnosis (FDD). The T2 and Q statistics-based CUSUMs are further applied to improve fault detection, where a set of PCA models are developed from historical data to characterize anomalous fingerprints that are correlated with each fault for accurate fault diagnosis. The algorithm developed in this paper can successfully identify and diagnose both individual and simultaneous occurrences of stochastic faults.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,