Article ID Journal Published Year Pages File Type
6595074 Computers & Chemical Engineering 2017 28 Pages PDF
Abstract
An optimization framework is presented to support the model builder in elucidating compartmental models that plausibly describe data obtained during experimentation. Here, one specifies a priori the maximum number of compartments and type of flows to contemplate during the optimization. The mathematical model follows a 'superstructure' approach, which inherently considers the different feasible flows between any pair of compartments. The model activates those flows/compartments that provide the optimal fit for a given set of experimental data. A regularized log-likelihood function is formulated as the performance metric. To deal with the resulting set of differential equations orthogonal collocation on finite elements is employed. A case study related to pharmacokinetics of an oncological agent demonstrates the advantages and limitations of the proposed approach. Numerical results show that the proposed approach can provide 33% smaller mean square prediction error in comparison with a compartmental model previously suggested in the literature.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,