Article ID Journal Published Year Pages File Type
6595117 Computers & Chemical Engineering 2016 61 Pages PDF
Abstract
We present theoretical details and experimental results from the real-time adaptive optimal input design for parameter estimation. The case study considers separation of three benzoate by reverse phase liquid chromatography. Following a receding horizon scheme, adaptive D-optimal input designs are generated for a precise determination of competitive adsorption isotherm parameters. Moreover, numerical techniques for the regularization of arising ill-posed problems, e.g. due to scarce measurements, lack of prior information about parameters, low sensitivities and parameter correlations are discussed. The estimated parameter values are successfully validated by Frontal Analysis and the benefits of optimal input designs are highlighted when compared to various standard/heuristic input designs in terms of parameter accuracy and precision.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,