Article ID Journal Published Year Pages File Type
6595301 Computers & Chemical Engineering 2016 23 Pages PDF
Abstract
This work addresses the optimal planning and campaign scheduling of biopharmaceutical manufacturing processes, considering multiple operational characteristics, such as the campaign schedule of batch and/or continuous process steps, multiple intermediate deliveries, sequence dependent changeovers operations, product storage restricted to shelf-life limitations, and the track-control of the production/campaign lots due to regulatory policies. A new mixed integer linear programing (MILP) model, based on a Resource Task Network (RTN) continuous time single-grid formulation, is developed to comprise the integration of all these features. The performance of the model features is discussed with the resolution of a set of industrial problems with different data sets and process layouts, demonstrating the wide application of the proposed formulation. It is also performed a comparison with a related literature model, showing the advantages of the continuous-time approach and the generality of our model for the optimal production management of biopharmaceutical processes.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,