Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6595529 | Computers & Chemical Engineering | 2014 | 10 Pages |
Abstract
The relatively high viscosities of ionic liquids could reduce the mass transfer efficiency of the extractive distillation process. The rate-based model was adopted to analyze this phenomenon since it predicted the performance of an extractive distillation pilot plant using ionic liquids as solvent. For the water-ethanol separation, three ionic liquids: 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium acetate and 1-ethyl-3-methylimidazolium dicyanamide and the organic solvent ethylene glycol were used for the analysis. Simulations were conducted for sieve trays and Mellapak® 250Y. The results indicate that relatively high viscosities affect the mass transfer efficiency. However, the improvements in relative volatilities obtained from the ionic liquids help to overcome this effect. However, with high solvent viscosities (>65 mPa s at T = 353.15 K) it was not possible to overcome the reductions. Additionally, at higher distillate rates high relative volatilities yielded negative effects on mass transfer efficiency because of a decrease in vapor velocity.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
E. Quijada-Maldonado, G. Wytze Meindersma, André B. de Haan,