Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6595651 | Computers & Chemical Engineering | 2014 | 11 Pages |
Abstract
In this work, we address optimization of large-scale, nonlinear, block-structured problems with a significant number of coupling variables. Solving these problems using interior-point methods requires the solution of a linear system that has a block-angular structure at each iteration. Parallel solution is possible using a Schur-complement decomposition. In an explicit Schur-complement decomposition, the computational cost of forming and factorizing the Schur-complement is prohibitive for problems with many coupling variables. In this paper, we show that this bottleneck can be overcome by solving the Schur-complement equations implicitly, using a quasi-Newton preconditioned conjugate gradient method. This new algorithm avoids explicit formation and factorization of the Schur-complement. The computational efficiency of this algorithm is compared with the serial full-space approach, and the serial and parallel explicit Schur-complement approach. These results show that the PCG Schur-complement approach dramatically reduces the computational cost for problems with many coupling variables.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
Jia Kang, Yankai Cao, Daniel P. Word, C.D. Laird,