Article ID Journal Published Year Pages File Type
6595708 Computers & Chemical Engineering 2014 13 Pages PDF
Abstract
Robustness is a critical feature of signaling pathways ensuring signal propagation with high fidelity in the event of perturbations. Here we present a detailed quantitative analysis of robustness in insulin mediated PI3K/AKT pathway, a critical signaling pathway maintaining self-renewal in human embryonic stem cells. Using global sensitivity analysis, we identified robustness promoting mechanisms that ensure (1) maintenance of a first order or overshoot dynamics of self-renewal molecule, p-AKT and (2) robust transfer of signals from oscillatory insulin stimulus to p-AKT in the presence of noise. Our results indicate that negative feedback controls the robustness to most perturbations. Faithful transfer of signal from the stimulating ligand to p-AKT occurs even in the presence of noise, albeit with signal attenuation and high frequency cut-off. Negative feedback contributes to signal attenuation, while positive regulators upstream of PIP3 contribute to signal amplification. These results establish precise mechanisms to modulate self-renewal molecules like p-AKT.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,