Article ID Journal Published Year Pages File Type
65994 Journal of Molecular Catalysis A: Chemical 2013 12 Pages PDF
Abstract

Phase-pure [Al]BEA and [Al,B]BEA zeolites, prepared by solid-state recrystallization of synthetic aluminum-containing magadiites and conventionally synthesized [B]BEA, were tested, after ion exchange with nickel, as bifunctional catalysts for hydroconversion of n-heptane. The reducibility of nickel ions incorporated into BEA zeolites by ion exchange was investigated by temperature-programmed reduction (TPR). The acidity of the samples was characterized with strong (pyridine (Py) and ammonia (NH3)) and weak (nitrogen) bases. The adsorbed bases were studied by transmission FT-IR (Py), diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy (N2), and temperature-programmed ammonia evolution (TPAE, NH3). Over Ni/H-[B]BEA the reactants were completely converted via fast hydrogenolysis, whereas this reaction pathway plays only a negligible role in the hydroconversion over Ni/H-[Al]BEA and Ni/H-[Al,B]BEA zeolites. Boron-containing BEA zeolites were less active catalysts than the boron-free catalyst in the principal unimolecular hydroconversion reactions. However, incorporation of boron into the framework of BEA zeolite results in a considerable selectivity shift toward isomerization. Results suggest that the acid strength of bridged hydroxyls, probed with weak (N2) and strong basis (pyridine), was found to be similar in the boron-free and boron-containing BEA samples. The decrease in the isomerization rate and the increase of the apparent activation energy upon incorporation of boron may be attributed to the decrease in the heat of n-heptane adsorption.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (120 K)Download as PowerPoint slideHighlights► [Al]-, [B]- and [Al,B]BEA zeolites were prepared by recrystallization of magadiite. ► Ni/H-[Al,B]BEA showed high activity (60%) and selectivity (92%) in C7 conversion. ► Incorporation of B into BEA results in a selectivity shift toward isomerization. ► n-Heptane hydroconversion rate decreased over boron-containing Ni/H-BEA catalysts. ► Acid sites of BEA can be tuned by insertion of boron and by ion exchange with Na.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , , ,