Article ID Journal Published Year Pages File Type
659946 International Journal of Heat and Mass Transfer 2011 11 Pages PDF
Abstract

Ambient winds may lead to poor fan performance, exhaust air recirculation and mal-distribution of the air across the tube bundles of the air-cooled condensers in a power plant. Investigations of the impacts of the ambient winds on the air-cooled condensers are key area of focus. Based on a representative 2 × 600 MW direct dry cooling power plant, the physical and mathematical models of the air-side fluid and heat flow in the air-cooled condensers at various ambient wind speeds and directions are set up by introducing the radiator model to the fin-tube bundles. The volumetric flow rate, inlet air temperature and heat rejection for different air-cooled condensers as a whole, condenser cells and fin-tube bundles are obtained by using CFD simulation. The results show that the thermo-flow performances for the air-cooled condenser as a whole, condenser cells and heat exchanger bundles vary widely in space. The thermal performances of the air-cooled condensers, condenser cells and fin-tube bundles at the downstream are generally superior to those at the upwind. It is of use for the upwind fan regulations and the A-frame condenser cell geometric optimization to investigate the space characteristics of the thermal performance for the air-cooled condensers in a power plant.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,