Article ID Journal Published Year Pages File Type
659962 International Journal of Heat and Mass Transfer 2011 14 Pages PDF
Abstract

Classic and high speed particle image velocimetry and infrared thermography are used to investigate the behavior of a round jet impinging on a flat plate for a Reynolds number 28,000, for orifice-to-plate distances of 3 or 5 nozzle diameters and for two different nozzles, a contraction and a long tube. The contraction nozzle reveals a different heat transfer distribution on the impinging plate compared to the long tube case. The jet can be excited by a loudspeaker at Strouhal numbers 0.26, 0.51 and 0.79. This acoustic forcing changes the jet structure, modifying annular vortex rings in the shear layer of the jet and increasing the turbulent values. The heat transfer is therefore modified, resulting in an increase of the Nusselt number near the jet axis and an alleviation or a shift of the secondary peak.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , ,