Article ID Journal Published Year Pages File Type
660131 International Journal of Heat and Mass Transfer 2010 9 Pages PDF
Abstract

The prime objective of the present study is to analyze numerically the steady state fluid flow and heat transfer characteristics of liquid sodium as a coolant flowing past over a rectangular nuclear fuel element having non-uniform volumetric energy generation. Accordingly, employing stream function-vorticity formulation and using finite difference schemes, the equations governing the flow and thermal fields in the coolant are solved simultaneously with energy equation for the fuel element by satisfying the conditions of continuity of temperature and heat flux at the solid–fluid interface. Keeping Prandtl number Pr = 0.005 for liquid sodium as constant, numerical results are presented and discussed for a wide range of aspect ratio Ar, conduction–convection parameter Ncc, total energy generation parameter Qt and Reynolds number ReH. It is concluded that the rate of heat dissipation from the fuel element to the coolant is independent of Ar, Ncc and Qt, whereas it increases in proportion to the increase in ReH. It is also found that for a given material of the fuel element, there is an upper limiting value of Ncc and ReH beyond which decrease in coolant temperature is negligibly small.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,