Article ID Journal Published Year Pages File Type
6602538 Electrochimica Acta 2018 10 Pages PDF
Abstract
The feasibility of the solid oxide electrolysis cell (SOEC) electrolysis of flue gas based on an electrolyte-supported LSCM-GDC/SSZ/LSCF-GDC (LSCM: La0.75Sr0.25Cr0.5Mn0.5O3-δ) single cell is comprehensively evaluated. Current density-voltage curves (I-V) and electrochemical impedance spectroscopy data (EIS) are recorded to characterize the electrochemical performance of SOEC. The results confirmed that the LSCM-GDC fuel electrode is chemically stable in the flue gas atmosphere. The results also showed that simulated SO2 with concentration of 15 ppm in the flue gas has a negligible influence on the cell at an electrolysis current density of ∼0.2 A cm−2. The O2 in the flue gas increases the electrolysis activity in the fuel electrode, thereby improving the efficiency of the SOEC electrolysis of flue gas. The co-existence of SO2 and O2 in flue gas can increase the electrolysis activity of SOEC electrolysis. The total resistance of the SOEC single cell at 800 °C under OCV is 2.21 Ω cm2, indicating that the SSZ-electrolyte-supported SOEC can be practically used for the effective SOEC electrolysis of flue gas containing SO2 and O2. The cell showed a stable voltage of 1.201 V for more than 100 h for the electrolysis of flue gas with SO2 and O2 at a current density of 0.5 A cm−2 and at a temperature of 800 °C. The post-mortem analysis showed that the microstructures of all cell components are stable after the SOEC long-term durability test.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , ,