Article ID Journal Published Year Pages File Type
6604403 Electrochimica Acta 2018 37 Pages PDF
Abstract
Emerging demands on heat-durable electronics have accelerated the need for high temperature supercapacitors as well as for understanding the influence of elevated temperatures on the capacitive behavior. In this work, we present a comprehensive study of the thermal influence on a supercapacitor containing 1-ethyl-3-methylimidazolium acetate (EMIM Ac) electrolyte and activated carbon (AC) electrodes. The performance variation as a function of temperature in a range from 21 °C to 150 °C reveals that a high specific capacitance of 142 F g−1 can be achieved at 150 °C at a current density of 2 A g−1 with a rate capability of 87% at 15 A g−1 (relative to 2 A g−1). At 150 °C, equivalent series resistance (ESR) is only 0.37 Ω cm2, which is a result of improved ionic conductivity of the electrolyte at elevated temperature. The ESR value of 2.5 Ω cm2 at room temperature reflects a good compatibility between EMIM Ac and AC. In addition, a capacitance retention of more than 95% (in the end of 1000 cycles) is maintained up to 120 °C followed by 85% at 150 °C. These results confirm EMIM Ac as a suitable candidate for carbon-based high temperature supercapacitors, and the observations regarding the thermal influence on performance metrics e.g. usable operation voltage could be applicable to other energy storage devices.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , ,