Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
660447 | International Journal of Heat and Mass Transfer | 2010 | 7 Pages |
Induction heating process was investigated numerically and experimentally. Cylindrically shaped steel workpiece was heated with different heating protocols. Numerical model with coupled electromagnetic and thermal physical phenomena was solved using the finite element method. Temperature-dependent and temperature-independent steel material properties were considered and their impact on simulation results was evaluated. Simulation results were also compared with experimental measurements using an algorithm for processing thermographic images. Good agreement between them was obtained for workpieces without defects. With ability to observe temperature distributions and material defects, the thermographic camera demonstrated to be an effective non-contact measurement tool and suitable alternative to thermocouples.