Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6605125 | Electrochimica Acta | 2017 | 34 Pages |
Abstract
Many 2D graphene-based catalysts for electrooxidation of glucose involved the use of binders and toxic reducing agents in the preparation of the electrodes, which potentially causes the masking of original activity of the electrocatalysts. In this study, a green method was developed to prepare binder-free 3D graphene aerogel/nickel foam electrodes in which bimetallic Pd-Pt NP alloy with different at% ratios were loaded on 3D graphene aerogel. The influence of Pd/Pt ratio (at%: 1:2.9, 1:1.31, 1:1.03), glucose concentration (30Â mM, 75Â mM, 300Â mM, 500Â mM) and NaOH concentration (0.1Â M, 1Â M) on electrooxidation of glucose were investigated. The catalytic activity of the electrodes was enhanced with increasing the Pd/Pt ratio from 1:2.9 to 1:1.03, and changing the NaOH/glucose concentration from 75Â mM glucose/0.1Â M NaOH to 300Â mM glucose/1Â M NaOH. The Pd1Pt1.03/GA/NF electrode achieved a high current density of 388.59Â AÂ gâ1 under the 300Â mM glucose/1Â M NaOH condition. The stability of the electrodes was also evaluated over 1000 cycles. This study demonstrated that the Pd1Pt1.03/GA/NF electrode could be used as an anodic electrode in glucose-based fuel cells.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
Chi-Him A. Tsang, K.N. Hui, K.S. Hui,