Article ID Journal Published Year Pages File Type
660549 International Journal of Heat and Mass Transfer 2011 14 Pages PDF
Abstract

Numerical solutions are sought, using FLUENT, to the mass, momentum and thermal energy equations for the 2-D flow of power-law fluids over a cylinder of square cross-section. The major thrust of this work is to delineate the values of the Reynolds number denoting the onset of flow separation and the limits of the steady flow regime for both shear-thinning and shear-thickening type fluids. Extensive results are reported on streamline and vorticity contours over wide ranges of power-law index (0.2–1.4) corroborating the occurrence of these two transitions. Having established the limits of the steady flow regime, drag and Nusselt number results are obtained in this regime as functions of the Reynolds number (0.1–40), of Prandtl number (0.7–100) for highly shear-thinning fluids (power-law index < 0.5) thereby extending the range of currently available results to that encountered in practical applications. The Nusselt number shows positive dependence on both the Reynolds and Prandtl numbers. Also, shear-thinning characteristics can augment the rate of heat transfer by up to 100% under appropriate conditions.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,