Article ID Journal Published Year Pages File Type
660619 International Journal of Heat and Mass Transfer 2009 9 Pages PDF
Abstract

The effect of structure on the thermal conductivity of geomaterials is studied for solid–fluid combinations representing a wide variety of two-phase porous geomaterials. Nearly 200 thermal conductivity data sets from the literature were analyzed for geomaterials made of natural soil particles, crushed rock particles and sedimentary rock. Two analog models are studied to quantify the effect of structure. It appears that the effect of structure increases with decreasing fluid/solid thermal conductivity ratio and structure effects are negligible from a ratio of approximately 1/15 and higher. A new simplified model is proposed to compute the effective thermal conductivity as a function of the fluid/solid thermal conductivity ratio and the structure of geomaterials. The model applies well to independent data of homogeneous and heterogeneous materials including industrial cement concrete.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,