Article ID Journal Published Year Pages File Type
660632 International Journal of Heat and Mass Transfer 2009 20 Pages PDF
Abstract

A numerical study has been undertaken to analyze the flow and thermal characteristics of forced pulsating flow through a channel with two porous-covering heated blocks in tandem. Solution of the coupled governing equations for the fluid/porous/solid composite system is obtained by utilizing a control-volume method through the use of a stream function-vorticity approach. This study details the effects of variations in the Darcy number, pulsation frequency and amplitude, three pertinent geometric parameters and effective conductivity ratio, to illustrate important fundamental and practical results. The results show that the periodic alteration in the structure of recirculation flow inside the inter-block region and behind the downstream block significantly enhances the heat transfer rate on the block right faces.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,