Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
660675 | International Journal of Heat and Mass Transfer | 2008 | 10 Pages |
Numerical analysis has been carried out to investigate forced convective heat transfer to water near the critical region in a horizontal square duct. Near the critical point convective heat transfer in the duct is strongly coupled with large variation of thermophysical properties such as density and specific heat. Buoyancy force parameter has also severe variation with fluid temperature and pressure in the duct. There is flow acceleration along the horizontal duct resulted from fluid density decrease due to the heat transfer from the wall. Local heat transfer coefficient has large variation along the inner surface of the duct section and it depends on pressure. Nusselt number on the center of the bottom surface also has a peak where bulk fluid temperature is higher than the pseudocritical temperature and the peak decreases with the increase of pressure. Flow characteristics of velocity, temperature, and local heat transfer coefficient with water properties are presented and analyzed. Nusselt number distributions are also compared with other correlations for various pressures in the duct.