Article ID Journal Published Year Pages File Type
660739 International Journal of Heat and Mass Transfer 2010 14 Pages PDF
Abstract

This paper is devoted to modelling of the thermal interface condition between a solid wall and a granular porous bed through which a fluid flows. Far from the wall, the porous medium, a bed of monodisperse glass beads, is homogeneous. An average enthalpic temperature, based on spatial averaging of the local field over a representative elementary volume, is defined, and a corresponding heat equation can be derived: it uses a Darcy velocity, dispersion coefficients that depend on this velocity, and two volumetric heat capacities (fluid and solid). The presence of a solid wall modifies the local arrangement of the beads, with a porosity that varies with the distance to the wall. In a plug flow situation in the core of the bed, the local velocity becomes larger in the near-wall region, creating a channelling effect that affects the wall-to-porous medium heat transfer. This transfer is studied, for transient wall heating, using heat transfer models of increased complexity and specific analytical methods. Finally a reduced model is proposed for this channelling effect, with its advection component that modifies heat transfer between wall and core region in a way that cannot be modelled by a single heat transfer coefficient.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,