Article ID Journal Published Year Pages File Type
6610941 Electrochimica Acta 2015 7 Pages PDF
Abstract
A novel electrochemical sensor for the detection of hydrogen peroxide (H2O2) is proposed based on carbon supported Pt-MnOx and Pt nanoparticles, successfully synthesized via microwave irradiation polyol method. The physicochemical properties of the Pt-MnOx and Pt nanoparticles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Transmission electron microscopy (TEM). Electrochemical properties of the nanoparticles were investigated by cyclic voltammetry (CV) and chronoamperometry (CA). Electrochemical measurements indicate that the oxidation current of H2O2 is linear (R2=0.998) to its concentration from 2 μM to 4.0 mM with a detection limit of 0.7 μM (signal/noise = 3). In addition, Pt-MnOx is not affected by ascorbic acid (AA) and uric acid (UA) which are common interfering species. Meanwhile, this Pt-MnOx non-enzymatic H2O2 sensor exhibits excellent selectivity, stability and reproducibility. Thus, this novel non-enzymatic sensor can be found practical applications in H2O2 detection.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,