Article ID Journal Published Year Pages File Type
661139 International Journal of Heat and Mass Transfer 2010 9 Pages PDF
Abstract

Saturated pool boiling of 2-propanol/water mixtures on a 12 mm diameter horizontal disk under atmospheric pressure was investigated. The CHF of the mixtures increased up to 1.7 times the CHF of water at 3.0–4.7 mol% concentrations of 2-propanol. To examine the mechanism of the CHF enhancement in the mixtures, liquid–vapor structures close to the heating surface were measured using a conductance probe. It was found that in the boiling of the mixtures, liquid–vapor structures show strong non-uniformity in the radial direction of the heating surface. The void fractions at 0.1–1 mm above the heating surface are small at the central region and large near the periphery of the heating surface. The liquid layer between the vapor mass and the heating surface is considerably thicker than that of water at the central region and becomes thinner near the periphery of the heating surface. This thicker liquid layer is likely to be the cause of the CHF enhancement in the 2-propanol/water mixtures.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,