Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
661183 | International Journal of Heat and Mass Transfer | 2008 | 12 Pages |
Abstract
Many industrial applications use flame impingement to obtain high heat-transfer rates. An analytical expression for the convective part of the heat transfer of a flame jet to a plate is derived. Therefore, the flame jet is approximated by a hot inert jet. In contradiction with existing convective heat-transfer relations, our analytical solution is applicable not only for large distances between the jet and the plate, but also for close spacings. Multiplying the convective heat transfer by a factor which takes chemical recombination in the cold boundary layer into account, results in an expression for the heat flux from a flame jet to the hot spot of a heated plate. Numerical and experimental validation show good agreement.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
M.J. Remie, G. Särner, M.F.G. Cremers, A. Omrane, K.R.A.M. Schreel, M. Aldén, L.P.H. de Goey,