Article ID Journal Published Year Pages File Type
6612086 Electrochimica Acta 2015 9 Pages PDF
Abstract
The electrochemical behavior of fesoterodine (FES), an antimuscarinic drug used for the treatment of urge incontinence and overactive bladder, was investigated using linear sweep and cyclic voltammetry at a stationary and rotating disc glassy carbon electrodes. A single two-electron anodic signal of FES was observed in neutral buffered aqueous methanolic solutions. Kinetics of alkaline hydrolysis of FES to its active metabolite 5-hydroxymethyl tolterodine was investigated by time dependent linear sweep voltammetry. Controlled potential electrolysis of FES solutions was performed at platinum gauze electrode in aqueous-methanolic media. Electrolyzed solutions were analyzed using ultra performance liquid chromatography with electrospray ionization quadrupole time-of-flight mass spectrometry. Two main products of electrochemical oxidation of fesoterodine were identified as 5-formyl fesoterodine (isobutyric acid 2-(3-diisopropylamino-1-phenyl-propyl)-4-formyl-phenyl ester) and N-desisopropylated fesoterodine (isobutyric acid 4-hydroxymethyl-2-(3-isopropylamino-1-phenyl-propyl)-phenyl ester). The mechanism of the electrochemical oxidation of FES has been proposed and confirmed using on-line electrochemistry/mass spectrometry with porous glassy carbon electrode.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,