Article ID Journal Published Year Pages File Type
661260 International Journal of Heat and Mass Transfer 2007 7 Pages PDF
Abstract

Present work is a numerical analysis of combustion of submicron carbon particles inside an inert porous medium where the particles in form of suspension in air enter the porous medium. A one-dimensional heat transfer model has been developed using the two-flux gray radiation approximation for radiative heat flux equations. The effects of absorption coefficient, emissivity of medium, flame position and reaction enthalpy flux on radiative energy output efficiency have been presented. It is revealed that in porous medium the combustion of suspended carbon particles is similar to premixed single phase gaseous fuel combustion except the former has shorter preheating temperature zone length. Use of porous ceramic having high porosity and made of Al2O3 or ZrO2 with stabilized flame position operated nearer to downstream end will ensure radiative output maximum and minimum at downstream and upstream end, respectively.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,