Article ID Journal Published Year Pages File Type
661288 International Journal of Heat and Mass Transfer 2007 14 Pages PDF
Abstract

Heat and mass exchanges between the two phases of a spray is a key point for the understanding of physical phenomena occurring during spray evaporation in a combustion chamber. Development and validation of physical models and computational tools dealing with spray evaporation requires experimental databases on both liquid and gas phases. This paper reports an experimental study of evaporating acetone droplets streaming linearly at moderate ambient temperatures up to 75 °C. Two-color laser-induced fluorescence is used to characterize the temporal evolution of droplet mean temperature. Simultaneously, fuel vapor distribution in the gas phase surrounding the droplet stream is investigated using acetone planar laser-induced fluorescence.Temperature measurements are compared to simplified heat and mass transfer model taking into account variable physical properties, droplet-to-droplet interactions and internal fluid circulation within the droplets. The droplet surface temperature, calculated with the model, is used to initiate the numerical simulation of fuel vapor diffusion and transport in the gas phase, assuming thermodynamic equilibrium at the droplet surface. Influence of droplet diameter and droplet spacing on the fuel vapor concentration field is investigated and numerical results are compared with experiments.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , ,