Article ID Journal Published Year Pages File Type
661297 International Journal of Heat and Mass Transfer 2006 6 Pages PDF
Abstract

The efficacy of a four-bed adsorption chiller has been studied experimentally with respect to a simple but yet effective passive heat and mass recovery schemes. It substantially improves the adsorption chiller COP by as much as 30% over a broad range of cycle time with a wide heat source, coolant and chilled water temperatures. Two schemes have been considered here: Firstly, only the mass recovery is achieved by pressure equalization between the concomitantly cooled adsorber and heated desorber, exploiting the intrinsic vapor-uptake potential by pressure swing that remains in the adsorbent at the end of a half-cycle. Secondly, when both the heat and mass recovery schemes are employed at a rating point of maximum cooling capacity, the chiller COP could increase further to as much as 48%. These improvements are performed without additional hardware changes to the adsorption chiller.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , , , , ,