Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6613927 | Electrochimica Acta | 2014 | 6 Pages |
Abstract
The mesostructural and electrochemical characterization of a redox-active polyelectrolyte-surfactant complex formed by polyallylamine tagged with an osmium complex and dodecylsulfate is presented. X-ray reflectivity (XRR), grazing-incidence small-angle X-ray scattering (GISAXS), X-ray photoelectron spectroscopy (XPS), contact angle goniometry (CA) and cyclic voltammetry (CV), including the numerical simulation of the voltammetric response, were employed to analyze the structure, stability and the electrochemical response of these supramolecular films. In contrast to redox-active polyelectrolyte multilayers (PEMs), the self-assembled system presented here shows a mesoscopic order yielding a film of layered structure very stable to an aqueous environment where the hydrophilic moieties (amino and sulfate groups) are not exposed to the solution since a contact angle of 95° is observed upon exposure to water. However, the film shows a self-exchange electron transfer mechanism with an apparent diffusion coefficient of 2 Ã 10â9 cm2 sâ1 for a film of 300 nm of thickness. This behavior shows that the film exposed to an aqueous solution undergoes a fast electron transfer process to/from the electrode surface and ions to/from the electrolyte solution.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
M. Lorena Cortez, Graciela A. González, Marcelo CeolÃn, Omar Azzaroni, Fernando Battaglini,