Article ID Journal Published Year Pages File Type
661565 International Journal of Heat and Mass Transfer 2009 7 Pages PDF
Abstract

An equivalent heat transfer coefficient between tissue and blood in a porous model is investigated, which is applied to the thermal analysis of a biological tissue in a hyperthermia therapy. This paper applies a finite difference method to solving the tissue temperature distribution using Pennes’ bio-heat transfer equation and a two-equation porous model, respectively, and then employs a conjugate gradient method to estimate the equivalent heat transfer coefficient in the two-equation porous model with a known perfusion rate in Pennes’ bio-heat transfer equation. The results indicate that the equivalent heat transfer coefficient is not a strong function of the perfusion rate, blood velocity and heating conditions, but is inversely related to the blood vessel diameter.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
,