Article ID Journal Published Year Pages File Type
661660 International Journal of Heat and Mass Transfer 2009 9 Pages PDF
Abstract

We have investigated the single-phase and boiling heat transfer of dielectric liquid under the Reynolds numbers (2000, 3000 and 5000) and under nozzle-plate spacing (H/W; 0.5, 1.0 and 4.0) in a submerged impinging jet system. The boiling incipience increases in proportion to the Reynolds number and in inverse proportion to the nozzle-to-surface spacing. The critical heat flux at H/W = 1.0 is lower than those of outer spacings, such as H/W = 0.5 and 4.0, due to the characteristics of the jet impingement heat transfer distribution. We suggest a correlation equation of nozzle-plate spacing (H/W) having the lowest CHF for various jet velocities.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,