| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 6617150 | Electrochimica Acta | 2013 | 5 Pages | 
Abstract
												An Al2O3-supported V2O5 composite (V2O5/Al2O3) was synthesized and its role in controlling oxygen reduction/evolution reaction during Li-O2 battery operation was studied. The prepared V2O5/Al2O3 composite catalyst was systematically characterized using X-ray diffraction, scanning electron microscopy, and particle size analysis. Energy-dispersive X-ray spectroscopic measurements confirmed the uniform distribution of V2O5 in the Al2O3 support catalyst. Li-O2 cells using the V2O5/Al2O3 composite as the cathode catalyst showed lower overpotentials than V2O5-carbon composites and pure carbon cathodes. The cyclic behavior confirmed that the catalytic effect of the prepared composite not only reduced the overpotentials, but also improved the specific capacities.
											Related Topics
												
													Physical Sciences and Engineering
													Chemical Engineering
													Chemical Engineering (General)
												
											Authors
												Sung Hoon Lim, Do Hyung Kim, Ji Young Byun, Bok Ki Kim, Woo Young Yoon, 
											