Article ID Journal Published Year Pages File Type
6618369 Electrochimica Acta 2012 6 Pages PDF
Abstract
Cyclic voltammetry and the stopped-flow kinetic measurements are used to investigate the thermodynamic driving force effects in the molecular oxygen reduction with the methyl (Me)-substituted ferrocenes MenFc (n = 0, 2, 4, 6, 8, 10) at the polarized water|1,2-dichloroethane (DCE) interface and in the homogeneous DCE phase, which is catalyzed by 5,10,15,20-meso-tetraphenylporphyrin (H2TPP) dissolved in DCE. Ferrocene derivatives are characterized by their reversible half-wave potentials E1/2rev which are inferred from cyclic voltammetric data, and by the coresponding formal potentials E′0(SHE,o) referenced to the standard hydrogen electrode in DCE. It is shown that the reduction of the activated oxygen with MenFc is the rate-determining step in both electrochemical and chemical catalytic cycles. Plots of the logarithm of the rate constant of the catalyzed, non-catalyzed and electrocatalyzed oxygen reduction vs. the reversible half-wave potential for the MenFc+/MenFc redox couples in DCE have approximately the same slopes. Their values correspond to the Brønsted coefficient of about 1/2, which is characteristic for reactions with the symmetric activation barrier. A comparison of rates of the catalyzed and non-catalyzed oxygen reduction points to the inhibitory effect of water in the former case. Observed difference between the rates of the catalyzed and electrocatalyzed oxygen reduction was ascribed to the inhibitory effect of the present counteranion.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,