Article ID Journal Published Year Pages File Type
662098 International Journal of Heat and Mass Transfer 2006 12 Pages PDF
Abstract

Experimental investigation has been conducted for quenching of hot cylindrical blocks made of copper, brass and steel with initial block temperature 250–400 °C by a subcooled water jet of diameter of 2 mm. The subcooling was from 5 to 80 K and the jet velocity was from 3 to 15 m/s. After impingement, the jet stagnates for a certain period of time in a small region near the centre and then the wetting front starts moving outwards. During this movement, when the surface temperature at the wetting front drops to 120–200 °C, the surface heat flux reaches its maximum value due to forced convection nucleation boiling. The maximum heat flux is a strong function of the position on the hot surface, jet velocity, block material properties and jet subcooling. A new correlation for maximum heat flux is proposed.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,