Article ID Journal Published Year Pages File Type
662110 International Journal of Heat and Mass Transfer 2006 9 Pages PDF
Abstract

The effect of internal absorption and emission of radiation on the heating/melting process of small fused silica particles is analyzed. The particle is considered to be semitransparent to radiation, and the radiative transfer theory is used to predict the local volumetric absorption/emission rate. The transient energy equation with conduction and radiation accounted for is solved to predict the temperature distribution in the particle and the solid–liquid interface position after the melting has started. The radiative transfer calculations are carried out on the spectral basis using published spectral optical property data for fused silica. Results of parametric calculations for different diameter particles, surroundings temperatures and external flow conditions are reported and discussed.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,