Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
662480 | International Journal of Heat and Mass Transfer | 2008 | 9 Pages |
This study presents the numerical simulation of the heat sink with an un-uniform fin height with a confined impingement cooling. The governing equations are discretized by using a control-volume-based finite-difference method with a power-law scheme on an orthogonal non-uniform staggered grid. The coupling of the velocity and the pressure terms of momentum equations are solved by the SIMPLEC algorithm. The well-known k–ε two-equations turbulence model is employed to describe the turbulent structure and behavior. The parameters include the Reynolds number (Re = 15,000 and Re = 25,000) and 12 un-uniform fin height designs (Type-b to Type-m). The objective of this study is to examine the effects of the fin shape of the heat sink on the thermal performance. It is found that the junction temperature can be reduced by increasing the fin height near the center of the heat sink. The results also show that there is a potential for optimizing the un-uniform fin height design.