Article ID Journal Published Year Pages File Type
662590 International Journal of Heat and Mass Transfer 2005 13 Pages PDF
Abstract

The present study numerically investigates two-dimensional fluid flow and heat transfer in the confined jet flow in the presence of applied magnetic field. For the purpose of controlling vortex shedding and heat transfer, numerical simulations to calculate the fluid flow and heat transfer in the confined jet are performed for different Reynolds numbers in the absence and presence of magnetic fields and for different Prandtl numbers of 0.02 (liquid metal), 0.7 (air) and 7 (water) in the range of 0 ⩽ N ⩽ 0.05, where N is the Stuart number (interaction parameter) which is the ratio of electromagnetic force to inertia force. The present study reports the detailed information of flow and thermal quantities in the channel at different Stuart numbers. As the intensity of applied magnetic fields increases, the vortex shedding formed in the channel becomes weaker and the oscillating amplitude of impinging jet decreases. The flow and thermal fields become the steady state if the Stuart number is greater than the critical value. Thus the pressure coefficients and Nusselt number at the stagnation point representing the fluid flow and heat transfer characteristics also vary as a function of Stuart number.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,