Article ID Journal Published Year Pages File Type
662671 International Journal of Heat and Mass Transfer 2008 18 Pages PDF
Abstract
In this paper, a viscous fluid flowing past a rotating isothermal cylinder with heat transfer is studied and simulated numerically by the lattice Boltzmann method (LBM). A numerical strategy for dealing with curved and moving boundaries of second-order accuracy for both velocity and temperature fields is proposed and presented. The numerical strategy and method are validated by comparing the present numerical results of flow without heat transfer with those of available previous theoretical, experimental and numerical studies, showing good agreements. On this basis, the convective heat transfer performance in such rotational boundary environments is further studied and validated; the numerical results are reported in the first time. The effects of the peripheral-to-translating-speed ratio, Reynolds number and Prandtl number on flow and heat transfer are discussed in details.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,